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Abstract
An integrable Anderson-like impurity model in a correlated host is derived
from a gl(2/1)-symmetric transfer matrix by means of the quantum-inverse-
scattering-method (QISM). Using the quantum transfer matrix technique, free
energy contributions of both the bulk and the impurity are calculated exactly.
As a special case, the limit of a localized moment in a free bulk (Kondo limit)
is performed in the Hamiltonian and in the free energy. In this case, high- and
low-temperature scales are calculated with high accuracy.

PACS numbers: 72.15.Qm, 04.20.Jb, 75.20.Hr, 75.10.Lp, 71.27.+a, 75.30.Hx

1. Introduction

Over decades, the model of a localized magnetic impurity in a non-magnetic metal has been
one of the major challenges in many-particle theory. Anderson [1] proposed a model of a
localized impurity interacting with a host of free electrons through hybridization

HA =
∑
k,τ

εkc
†
k,τ ck,τ + εdnd +

∑
k,τ

(
Mkd

†
τ ck,τ + M∗

k c
†
k,τ dτ

)
+ Und,↑nd,↓.

On the impurity site, a Coulomb repulsion U is allowed. The scattering at the impurity is
assumed to be isotropic and therefore one dimensional. In the limit |Mk|2/U � 1, a localized
moment forms, which is demonstrated by a canonical transformation of the Anderson model,
resulting in the Kondo model [2] with an impurity operator

Hi = 2J
∑
k,k′

c
†
k,τστ,τ ′ck′,τ ′σi (1)

where σ = (σ x, σ y, σ z) denotes the Pauli matrices. The Kondo model describes a free
host, interacting weakly with a localized magnetic moment via antiferromagnetic XXX spin
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exchange with an amplitude J . ‘Weak interaction’ means that at high temperatures, the
coupling is negligible and the impurity spin shows Curie–Weiss behaviour. The lesson to
be learned from this limit is that a localized moment occurs if singly occupied sites are
energetically favourable and hybridization only leads to virtual double or zero occupation.
The model (1) served as the starting point for Kondo [3], who performed a perturbational
calculation of the scattering amplitude between host and impurity up to third order in J . He
discovered a ln T̃ K/T contribution to the electrical resistivity. T̃ K is the crossover temperature
which indicates the limit of perturbation theory: a divergence occurs for T ∼ T̃ K .

The method which overcomes the failure of perturbation theory is scaling. By
the implementation of his numerical renormalization group, Wilson [4] achieved a non-
perturbative calculation of the impurity contribution to the magnetic susceptibility χ and the
specific heat C at T � T̃ k . By assuming a linear dispersion in the conduction band he
discovered Fermi-liquid-like behaviour of the impurity for T � T̃ K . In the other extreme, at
T � TK , Wilson confirmed the asymptotic expansion in ln T̃ K/T discovered by perturbation
theory techniques.

Andrei [5] and Wiegmann [7] obtained the spectrum exactly by the Bethe ansatz (BA).
The linearized energy–momentum relation turned out to be crucial for the application of
the BA. Thermodynamic equilibrium response functions were calculated in the following
by employing thermodynamic BA (TBA) techniques [8]. The impurity contribution to
the free energy is encoded in a set of infinitely many coupled NLIE. These contain the
whole information about thermodynamic equilibrium functions. Especially, the asymptotic
high-temperature expansion due to Kondo and the Wilson ratios are encoded therein. The
low-temperature Fermi-liquid-like behaviour was confirmed in the cited works. However,
the high-temperature asymptotic expansion was not performed as far as in Wilson’s
approach.

We develop a lattice path integral representation of the free energy of a one-dimensional
Anderson-like impurity model in a correlated host. This model can be viewed as a lattice-
regularized version of the Anderson model in the continuum. As a special case, the Kondo
model is obtained in a certain scaling limit. The host is based on a four-dimensional
representation of the Lie superalgebra gl(2|1). The corresponding four states per lattice
site are zero, single (with spin up or down) and double occupation. The impurity degrees of
freedom are described by a three-dimensional representation of gl(2|1). Double occupation
on the impurity site is excluded from the beginning. The parameters of the model can be
tuned such that on the one hand, particle exchange between the impurity site and adjacent
host sites is eliminated by a canonical transformation and on the other hand zero occupation
is energetically suppressed. The same parameter tuning makes vanish correlations in the host.
These conditions fulfilled, a localized moment in a free host occurs (Kondo limit).

In order to regularize the continuous Kondo model, it is quite natural to choose the
superalgebra gl(2|1). Its even subalgebra is u(1) ⊗ su(2), encoding charge and spin degrees
of freedom, respectively. Spin-charge separation occurs in one dimension for interacting
electron systems [9], and the impurity is supposed to possess exclusively spin degrees of
freedom. Indeed, the scaling limit reduces gl(2|1) to one of its subalgebras, su(2), in the
impurity space. Then the excitation spectrum contains only spin degrees of freedom on the
impurity site.

The model proposed in this paper allows for the Kondo limit as one special case. We
calculate the free energy exactly in the general case, that is an Anderson-like impurity in an
interacting host and perform the Kondo limit afterwards. Thus our results are farther reaching
than the known non-perturbative treatments of the Kondo model [4, 8]. The free energy of
the host and of the impurity are given by eigenvalues of distinct quantum transfer matrices
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and can therefore be separated. In the Kondo limit, Wilson’s results are confirmed with high
accuracy. The general Anderson-like case will be investigated elsewhere [10].

This paper is organized as follows. In the following section, we derive the Hamiltonian
by QISM. The third section deals with the calculation of the free energy. In each of these
sections, the Kondo limit is treated explicitly. Section 4 contains the derivation of Wilson’s
results in the framework of our path integral approach. A conclusion and an outlook form the
last section.

In all what follows we set kB = 1, and gµB = 1, where kB is Boltzmann’s constant, g

is the gyromagnetic factor and µB is the Bohr magneton. An index i (h) denotes quantities
pertaining to the impurity (host).

2. The impurity model

Let V (d) be the module giving rise to the d-dimensional irrep of gl(2|1), d = 3, 4. A grading
is assigned to the basis vectors through the parity function p,

d = 4: p[1] = p[4] = 0; p[2] = p[3] = 1
d = 3: p[1] = p[2] = 0; p[3] = 1.

(2)

The matrices R
(d,d ′)
i,j (u) ∈ End

(
V

(d)
i ⊗ V

(d ′)
j

)
satisfy the graded Yang–Baxter-equation (YBE)[

R
(d,d ′)
2,3 (u)

]β,γ

β ′,γ ′
[
R

(d ′′,d ′)
1,2 (v)

]α,γ ′

α′,γ ′′
[
R

(d ′′,d)
1,3 (v − u)

]α′,β ′

α′′,β ′′(−1)(p[α]+p[α′])p[β ′]

= [R(d ′′,d)
1,3 (v − u)

]α,β

α′,β ′
[
R

(d ′′,d ′)
1,2 (v)

]α′,γ
α′′,γ ′

[
R

(d,d ′)
2,3 (u)

]β ′,γ ′

β ′′,γ ′′(−1)(p[α′]+p[α′′])p[β ′].

(3)

Summation over doubly occurring indices is implied in the foregoing equation and in all what
follows.

Explicit expressions of the R matrices are given in the following:

R(3,3)(u) = 1

u + 1

(
u + (−1)p[a]peb

a ⊗ ea
b

)
(4)

R(3,4)(u) = 1

u + α
2 + 1

(
u +

α

2
+ 1 + (−1)p[a]peb

a ⊗ Ea
b

)
(5)

R(4,4)(u) = −
(

1 +
2α

u − α
P̌ 1 − 2α + 2

u + α + 1
P̌ 3

)
. (6)

eb
a

(
Eb

a

)
are the nine three- (four-) dimensional generators of gl(2|1), obeying[

ea
b, e

c
d

]
± := ea

be
c
d − (−1)(p[a]+p)(p[c]+p[d])ec

de
a
b

= δa
de

c
b − (−1)(p[a]+p)(p[c]+p[d])δc

be
a
d (7)

and the same for the Ea
b . P̌ 1, P̌ 3 are projectors from V (4) ⊗ V (4) onto gl(2|1) modules with

highest weights (0, 0|2α) and (−1,−1|2α + 2), respectively. They are given explicitly in [11].
For a matrix representation of ea

b , choose the basis

|1〉 = (1, 0, 0) |2〉 = (0, 1, 0) |3〉 = (0, 0, 1).

Then ea
b := |b〉〈a| is the usual matrix representation of projectors in three-dimensional space.

As to the Ea
b , we choose a basis in V (4),

|1〉 = (1, 0, 0, 0) |2〉 = (0, 1, 0, 0) |3〉 = (0, 0, 1, 0) |4〉 = (0, 0, 0, 1).
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We call the projectors associated with these states ma
b := |b〉〈a|, a, b = 1, 2, 3, 4. One verifies

that the set [11]

E1
1 = −|3〉〈3| − |4〉〈4| E2

2 = −|2〉〈2| − |4〉〈4|
E3

3 = α|1〉〈1| + (α + 1)(|2〉〈2| + |3〉〈3|) + (α + 2)|4〉〈4|
E2

1 = |2〉〈3| E1
2 = |3〉〈2|

E3
2 = √

α|1〉〈2| +
√

α + 1|3〉〈4| E2
3 = √

α|2〉〈1| +
√

α + 1|4〉〈3|
E3

1 = −√
α|1〉〈3| +

√
α + 1|2〉〈4| E1

3 = −√
α|3〉〈1| +

√
α + 1|4〉〈2|

(8)

satisfies equation (7). In the following, the real parameter α is restricted to α > 0.
Consider the set of matrices R defined by

[ R
(d ′,d)

(u)]α,β

γ,δ = (−1)p[δ](p[γ ]+p[α])[R(d ′,d)(−u)]γ,β

α,δ . (9)

The permutation of the indices means that creators and annihilators are exchanged in the
auxiliary space of R. These R-matrices satisfy

[ R
(d,d ′)

(u)]β,γ

β ′,γ ′ [ R
(d ′′,d ′)

(v)]α,γ ′
α′,γ ′′ [R(d ′′,d)(v − u)]α

′,β ′
α′′,β ′′(−1)(p[α]+p[α′])p[β ′]

= [R(d ′′,d)(v − u)]α,β

α′,β ′ [ R
(d ′′,d ′)

(v)]α
′,γ ′

α′′,γ ′′ [ R
(d,d ′)

(u)]β
′,γ ′

β ′′,γ ′′(−1)(p[α′]+p[α′′])p[β ′].

(10)

The R-matrices can be translated into a graphical language. Straight lines denote the
four-dimensional space, wavy lines symbolize the three-dimensional space

=

β

u γ

v

δ

αγ,δ
α,β[R  (u–v)](4,3) =

β

u γ

v

δ

αγ,δ
α,β[R  (u–v)](4,4) .

The two lines symbolize the two spaces intertwined by Ri,j . Each line carries a direction
indicated by an arrow; both the vertical and horizontal lines carry spectral parameters. The
argument of R is given by the difference between the right and the left ‘incoming’ parameters.
The replacement R → R means flipping the arrow on the vertical bond.

The YBE equation (3) in graphical language reads

=

u

v

v

u

2
3

3

1

1

2

.

‘Other’ YBEs are obtained by flipping arrows (that means replacing R → R) and/or
substituting straight by wavy lines (that is, changing the dimension in one of the spaces).

‘Unitarity’ is a further property of the R-matrices

[R(d,d ′)(u)]β,γ

δ,α [R(d ′,d)(−u)]α,δ
γ ′,β ′ = δ

β

β ′δ
γ

γ ′ (11)

and the same for R. The unitarity property fixes normalization constants of the R-matrices.
In the following, we will speak of ‘normalized’ R-matrices when they satisfy equation (11);
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non-normalized R-matrices differ from those by constant pre-factors, but still fulfil the YBE.
A direct verification of equation (11) for d = d ′ = 3 (d = d ′ = 4) is done by using the
projection properties

ea
be

c
d = δa

de
c
b P̌ j P̌ k = δj,kP̌ k (12)

or by using the YBE with standard initial conditions. Furthermore, for d = 3, d ′ = 4 in
equation (11), one should employ

Eα
βE

β

δ (−1)p[β](p[α]+p[δ]) = −(α + 2)(−1)p[α]p[δ]Eα
δ .

In order to construct a lattice model, one embeds mb
a, e

b
a into End [V (3) ⊗ (V (4))⊗L], such that

eb
a acts non-trivially only on the lattice site 0. Therefore, consider the graded tensor product

of two operators v,w

va
b ⊗s wc

d = (−1)(p[a]+p)p[d]va
b ⊗ wc

d

where v,w stand for e,m. The operator of unity in three- (four-) dimensional space is I3 = ec
c(

I4 = mc
c

)
. Following [12], define

[e0]ab := ea
b ⊗s I

⊗sL
4

= (−1)(p[a]+p)
∑L

k=1 p[ck ]ea
b ⊗ mc1

c1
⊗ · · · ⊗ mcL

cL

[mj ]ab := I3 ⊗s I
⊗s (j−1)

4 ⊗s ma
b ⊗s I

⊗s (L−j)

4

= (−1)(p[a]+p)
∑L

k=j+1 p[ck ]I3 ⊗ I
⊗(j−1)

4 ma
b ⊗ mc1

c1
⊗ · · · ⊗ mcL

cL

with j = 1, . . . , L. Then

[e0]ab[e0]cd = δa
d [e0]cb (13a)

[e0]ab[mk]cd = (−1)(p[a]+p)(p[c]+p[d])[mk]cd [e0]ab. (13b)

Analogous relations hold between mj,mk .
Principally, at this point one could derive the Hamiltonian. However, it is more convenient

to find a fermionic representation of the R matrices in order to use the more familiar language
of fermionic field operators c

†
τ,j , cτ,j , acting on the spin directions τ =↑,↓ and on the lattice

site j . This is done by employing the technique of Göhmann [12, 13], which consists in
identifying the [mj ]ab, [e0]ab with certain combinations of fermionic operators.

The entries [Xj ]ab of the matrix

Xj =


nj↓nj↑ nj↓c

†
j↑ c

†
j↓nj↑ c

†
j↓c

†
j↑

nj↓cj↑ nj↓(1 − nj↑) −c
†
j↓cj↑ −c

†
j↓(1 − nj↑)

cj↓nj↑ cj↓c
†
j↑ (1 − nj↓)nj↑ (1 − nj↓)c

†
j↑

−cj↓cj↑ −cj↓(1 − nj↑) (1 − nj↓)cj↑ (1 − nj↓)(1 − nj↑)

 (14)

satisfy projection and commutation properties formally identical to equations (13a), (13b)
with grading p[1] = p[4] = 0, p[2] = p[3] = 1 in accordance with equation (2) for d = 4.
This is the only constraint on [mj ]ab , so that we identify [Xj ]ab ≡ [mj ]ab . The whole set (8)
reads in fermionic language

[Ej ]3
3 = α + 2 − (nj↓ + nj↑)

[Ej ]1
1 = nj↓ − 1 [Ej ]2

2 = nj↑ − 1

[Ej ]1
2 = −c

†
j↑cj↓ [Ej ]2

1 = −c
†
j↓cj↑

[Ej ]1
3 = −√

αnj↑cj↓ − √
α + 1(1 − nj↑)cj↓ [Ej ]3

1 = −√
αnj↑c

†
j↓ − √

α + 1(1 − nj↑)c
†
j↓

[Ej ]2
3 = √

αnj↓cj↑ − √
α + 1(1 − nj↓)cj↑ [Ej ]3

2 = √
αnj↓c

†
j↑ − √

α + 1(1 − nj↓)c
†
j↑.
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The even sub-algebras are manifest: E3
3 is the u(1)-generator, and E

1,2
1,2 are the su(2) generators.

The fermionization of the three-dimensional ea
b is done with the matrix Y, resulting from X,

equation (14) by deleting the first row and column

Y =

nd,↓(1 − nd,↑) −d
†
↓d↑ −d

†
↓(1 − nd,↑)

d↓d
†
↑ (1 − nd,↓)nd,↑ (1 − nd,↓)d

†
↑

−d↓(1 − nd,↑) (1 − nd,↓)d↑ (1 − nd,↓)(1 − nd,↑)

 . (15)

We slightly modified the notation, replacing c†, c, n by d†, d, nd . Horizontal and vertical bars
separate fermionic and bosonic sectors. The boxes on the diagonal of Y contain the generators
of su(2), u(1). Set [e0]ba = Y b

a , such that equations (13a), (13b) hold with grading {1, 1, 0}.
The monodromy matrices

T (u) = R
(4,4)
a,L (u)R

(4,4)
a,L−1(u) . . . R

(4,4)
a,1 (u)R

(4,3)
a,0 (u + iu0)

T (u) = R
(4,4)

a,L (−u)R
(4,4)

a,L−1(−u) . . . R
(4,4)

a,1 (−u)R
(4,3)

a,0 (−u + iu0)
(16)

consist of sequences of R matrices, multiplied in (horizontal) auxiliary space. Note the shift by
iu0 on the zeroth lattice site, where the dimension of the (vertical) quantum space is reduced
by one. This site shall be denoted as ‘impurity site’. The shift is done by iu0 ∈ C, for reasons
which will become clear later. Graphically, T (u) is depicted as

u
−

i
0

01L

.

The super-trace is called transfer matrix

τ(u) = straT (u) τ(u) = straT (u) (17)

ln[ττ ](u) = ln[ττ ](0) + u [τ−1(0)τ ′(u) + τ−1(0)τ ′(u)]u=0︸ ︷︷ ︸
=: const H

+ O(u2). (18)

In the last line, the Hamiltonian was defined as the logarithmic derivative of the two transfer
matrices at zero spectral parameter. By scaling u, one is free to multiply the Hamiltonian by
a constant factor.

Before evaluating equation (18), let us shortly comment on the case of a homogeneous
model without impurity. We denote the corresponding quantities with a subscript h. This
model has been extensively studied in [11, 17]. Assuming periodic boundary conditions
1 ≡ L + 1, τh(0) (τ h(0)) is the right (left) shift operator, and

ln τh(0) = iP = −ln τh(0) (19)

where P is the generator of translations to the right. The derivative with respect to u in
equation (18) yields a sum of L terms, each one corresponding to R′

j,j+1(0), j = 1, . . . , L.
For the ease of notation, let us follow the graphical depiction of [16]. The following figure
shows the j th term of

[
τ−1
h (0)τ ′

h(u)
]
u=0:

hj,j+1

τ –1(0)

=

j+1 0jL

h

h
τ (0)

.
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The vertex with a dot denotes R′
j,j+1(0). For u = 0, the vertices decouple and taking the trace

over a row yields the right shift operator τh(0). Thus

Hh =
L∑

j=1

hj,j+1

hj,j+1 = (α + 1)D
d

du
ln[R(4,4)(u)]j,j+1;u=0.

(20)

Hh is scaled by D(α + 1),D is a bandwidth parameter whose significance will become clear
later. Using explicit expressions for R

(4,4)
j,j+1 from [11] one confirms the expression for hj,j+1

given in [17]

hj,j+1 = (α + 1)D

(
2

α
(P̌ 1)j,j+1 − 2

α + 1
(P̌ 3)j,j+1

)
= −D

∑
τ

(
c
†
j,τ cj+1,τ + c

†
j+1,τ cj,τ

)
e− η

2 (nj,τ +nj+1,τ ) + U(nj,↑nj,↓ + nj+1,↑nj+1,↓)

+ tp
(
c
†
j+1,↑c

†
j+1,↓cj,↑cj,↓ + c

†
j,↑c

†
j,↓cj+1,↑cj+1,↓

)
+ D(nj + nj+1) − 2D

U = D

α
= tp e−η = α + 1

α
; τ = −τ.

(21)

One can show by a canonical transformation [17] that the limit α → 0 leads to the t − J

model. On the other hand, for α � 1, the leading order are free fermions

Hh/D = 2
L∑

j=1

nj − 2 −
L∑

j=1

∑
τ

(
c
†
j,τ cj+1,τ + c

†
j+1,τ cj,τ

) [
1 +

1

2α
(nj,τ̄ + nj+1,τ̄ )

]

+
2

α

L∑
j=1

nj,↑nj,↓ +
1

α

L∑
j=1

(
c
†
j+1,↑c

†
j+1,↓cj,↑cj,↓ + c

†
j,↑c

†
j,↓cj+1,↑cj+1,↓

)
+ O(D/α3/2). (22)

Since in this paper, we aim at realizing a free host, our interest is in the limit α � 1.
Due to the insertion of R

(4,3)
a,0 ,H receives an impurity contribution Hi . It can be derived

graphically. First observe that equation (19) no longer holds; but due to unitarity (11), one
still has τ(0) = τ−1(0). Then τ(0) is depicted as

u
−

i
0

1 L0

.

In comparison with the free host, the changes induced by the impurity stemming from ln τ ′(0)

correspond to the graphs:

u
−

i
0

01

u
−

i
0

0 L1

.
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A vertex with a dot symbolizes the derivative with respect to the spectral parameter. The first
term

R
(3,4)
1,0 (−iu0)

[
R

(4,3)
1,0

]′
(iu0) = R

−1(4,3)
1,0 (iu0)

[
R

(4,3)
1,0

]′
(iu0)

couples the impurity to the left neighbouring site. The second term

R
(3,4)
1,0 (−iu0)

hL,1

D(α + 1)
R

(4,3)
1,0 (iu0) = R

−1(4,3)
1,0 (iu0)

hL,1

D(α + 1)
R

(4,3)
1,0 (iu0)

is a three site coupling. Analogous terms, with L and 1 interchanged, are provided by ln τ ′(0).
The inverse matrix [R(4,3)]−1 is found by equation (11). In analogy to the host Hamiltonian, the
spectral parameter u is scaled by D(α + 1), where D is a bandwidth parameter. Using the
fermionization technique, we calculate Hi . It contains terms which are symmetric and others
which are antisymmetric under (L ↔ 1) exchange. In the combined thermodynamic and
continuum limit, the latter do not interact with the impurity [18], so we do not consider them
in the following. Then

Hi = −2DJα(1 − nd)(α + F1,L)Pd − DJα

√
αPd

∑
τ

[
d†

τ (cL,τ + c1,τ ) − dτ

(
c
†
L,τ + c

†
1,τ

)]
Pd

+ DJα

∑
τ

nd,τ

(
c
†
L,τ c1,τ + c

†
1,τ cL,τ

)
Pd

+ DJα

∑
τ

d†
τ dτ̄

(
c
†
L,τ̄ c1,τ + c

†
1,τ̄ cL,τ

)
Pd + O(DJα/α1/2) (23)

where the projector Pd := 1 − nd,↑nd,↓ projects onto non-doubly occupied states on the
impurity site. Furthermore

F1,L = 2 − 2ĥ − c
†
1,↑cL,↑ − c

†
1,↓cL,↓ − c

†
L,↑c1,↑ − c

†
L,↓c1,↓

Jα = 2α

v2
0 + α2

> 0 v0 := u0/2
(24)

with the most interesting range of the coupling constant

α−2 � Jα � α−1. (25)

In appendix A, an alternative fermionization is used, resulting in essentially the same
Hamiltonian.

Finally, one includes external fields µ, h, by

Hex = h

2

 L∑
j=1

(nj,↑ − nj,↓) + (nd,↑ − nd,↓)

− µ

 L∑
j=1

nj + ndPd

 . (26)

Equations (22), (23), (26) define the entire Hamiltonian of the impurity model in the limit of an
asymptotically free host. In appendix B, it is shown that Hh + Hi displays gl(2|1) symmetry.
Hex breaks this symmetry, but preserves integrability.

The Kondo limit can be performed by a canonical transformation which eliminates
transitions between single and zero occupation of the impurity site. It is conveniently done in
Fourier space

c
†
j,τ = 1√

L

π∑
k=−π

c
†
k,τ eikj
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Hh = D

{∑
k

∑
τ

εkc
†
k,τ ck,τ − 2 +

2

Lα

∑
Q,q,q ′

[∑
τ

cos
Q

2
cos

(
q +

Q

2

)
c
†
q+Q,τ cq,τ c

†
q ′−Q,τ̄ cq ′,τ̄

+ c
†
q,↑cq+Q,↑c

†
q ′−Q,↓cq ′,↓ − cos(q + q ′)c†q+Q,↑cq,↑c

†
q ′−Q,↓cq ′,↓

]}
(27)

εk = 2(cos k + 1) − µ/D (28)
Hi = {2DJα(nd − 1)(α + F1,L) − µnd}Pd + Jα(αD)1/2Pd

∑
k,τ

(
Mkd

†
τ ck,τ + M∗

k c
†
k,τ dτ

)
Pd

+ Jα

∑
τ,k,k′

Nk,k′
[
nd,τ c

†
k,τ ck′,τ + d†

τ dτ̄ c
†
k,τ̄ ck′,τ

]
Pd (29)

Mk = − 1√
l
(1 + eik) Nk,k′ = 1

l
(e−ik′

+ eik).

Here l = L/D is the constant length of the chain, and D−1 plays the role of a lattice constant.
The canonical transformation is generated by an operator A, which yields a transformed
Hamiltonian Heff = exp(A)H exp(−A) not containing any hybridization between impurity
and host in the leading order O(Jα). One verifies that

A = Jα

√
α

D
Pd

∑
k,τ

1

εd − εk

(
Mkd

†
τ ck,τ − M∗

k c
†
k,τ dτ

)
Pd (30)

where εd := 2Jααnd − µ/D has been defined. Heff contains terms O
(
αJ 2

α

)
. Given the

restriction (25), these terms can be neglected. After the transformation, the excitation spectrum
of the impurity site contains only the contribution for single occupation. The contribution
for non-occupation in the impurity operator is energetically suppressed in the strong coupling
limit: in the language of renormalization theory, v0 drives the impurity Hamiltonian to a strong
coupling fixed point at low temperatures. This will be demonstrated in the following section.
Thus we do not consider the contribution from zero occupation to the Hamiltonian in the
ongoing.

To perform the scaling limit, the fermionic spectrum is linearized around incommensurate
Fermi points ±kF avoiding Umklapp scattering. The linearization gives rise to right (left)
moving particles R (L). To avoid divergences due to the unbounded linear spectrum, operator
products are normal ordered

:c†k,ν,τ ck,ν ′,τ ′ : = c
†
k,ν,τ ck,ν ′,τ ′ − 〈c†k,ν,τ ck,ν ′,τ ′

〉
0

where ν ∈ {R,L}. The continuous description is achieved by introducing field operators [14]

c
†
k,ν,τ = 1√

L

L∑
n=1

eikνnc†n,ν,τ

=
√

D

L

L∑
n=1

eikνD
n
D c†n,ν,τ

√
D

1

D

= 1√
l

∫ l

0
eiqk,νxψ †

ν,τ (x) dx

where x = n/D, ψ †
ν,τ (x) = limD→∞

√
Dc

†
n,ν,τ , qk = k · D. ψ †, ψ are now fermionic field

operators with
{
ψν,τ (x), ψ

†
ν ′,τ ′(x ′)

} = δ(x − x ′)δν,ν ′δτ,τ ′ . Again normal ordering is imposed

:ψ †
ν,τ (x)ψν ′,τ ′(x): = lim

ε→0

[
ψ †

ν,τ (x + ε)ψν ′,τ ′(x) − 〈ψ †
ν,τ (x + ε)ψν ′,τ ′(x)

〉
0

]
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where 〈· · ·〉0 is the expectation value in the ground state. Let us summarize the external fields
again in an operator Hex . Then

Hh

2D
=
∫ l

0

∑
ν,ν ′,τ

[
δν,ν ′(cos kF + 1) : nν : − δν,ν ′ 11ν + iν

sin kF

D
:ψ †

τ,ν(x)
d

dx
ψτ,ν ′(x):

]
dx (31a)

Hi = 2 cos kF J

∫ l

0
δ(x)

∑
ν,ν ′,τ

[
δν,ν ′nd,τPd :nν,τ (x): + d†

τ dτ̄ :ψ †
ν,τ̄ (x)ψν ′,τ (x):

]
dx (31b)

Hex =
∫ l

0
−µ[n(x) + δ(x)ndPd ] +

h

2
[δ(x)(nd,↑ − nd,↓) + (n↑(x) − n↓(x))] dx. (31c)

The occupation number operators are nτ,ν = :ψ †
τ,νψτ,ν :, nν =∑τ nτ,ν, nτ =∑ν nτ,ν .

As far as the terms (31a), (31b) are concerned, one may pass to a Weyl basis by the
canonical transformation

φ±,τ (x) = 1√
2
[ψL,τ (x) ± ψR,τ (−x)]

{
φν,τ (x), φ

†
ν ′,τ ′(x

′)
} = δ(x − x ′)δν,ν ′δτ,τ ′ .

Interaction terms in the host are non-local in the φ±(x); however, as will be shown in the
following section these are accounted for by a redefinition of the Fermi velocity vF , sin kF =
vF → ṽF = vF (1 + O(1/α)). The Weyl basis demonstrates that the impurity couples only
with one of the two host channels. The Hamiltonian density thus reads

Hh = 2
∑

τ,ν=±

[
iṽF :φ†

ν,τ (x)
d

dx
φν,τ (x): + D(cos kF + 1):nν(x): − D11ν

]
Hi = 4J cos kF

∑
τ

δ(x)
[
:φ†

+,τ (x)φ+,τ (x):nd,τPd + :φ†
+,τ (x)φ+,τ̄ (x):d†

τ̄ dτ

]
Hex = −µ[n(x) + δ(x)nd ] +

h

2
[δ(x)(nd,↑ − nd,↓) + n↑(x) − n↓(x)].

(32)

The fermionic operators of the impurity can be expressed in terms of spin operators with
index i

σ z
i = nd,↑ − nd,↓ σ +

i = d
†
↑d↓ σ−

i = d
†
↓d↑.

Then one directly recognizes that the impurity operator is su(2)-symmetric and can be
completed to the XXX-exchange operator

Hi = 2Jδ(x)
∑
τ,τ ′

:φ†
+,τ (x)στ,τ ′φ+,τ ′(x):σi + 2Jδ(x)ndPd :n+(x): (33)

where σ = (σ x, σ y, σ z)T and 2 cos kF Jα =: J is defined. Equation (33) constitutes the
isotropic Kondo model.

3. Calculation of the free energy

Taking account of equation (18),

e−βHh = lim
N→∞

[τ̄h(uN)τh(uN)]N/2 uN = −βD(α + 1)

N

e−βH = lim
N→∞

[τ̄ (uN)τ(uN)]N/2 e−βHex

e−βHex =
L∏

j=1

e−β[h/2(nj,↑−nj,↓)−µnj ] e−β[h/2(nd,↑−nd,↓)−µ
∑

τ nd,τ ] =: e−β
∑L

j=1 hex,j e−βHex,i .
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)
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Figure 1. Classical lattice representing the free energy of the impurity model. L is the physical,
N the Trotter direction. The dimension in the impurity quantum space (wavy line) is reduced
by one. The spectral parameter on the straight vertical lines is 0 and on the wavy vertical line
−iu0. For the further analysis it is convenient to introduce the auxiliary spectral parameter −iv
on the vertical lines. Crosses stand for twisted boundary conditions, induced by external fields h
and µ.

The even integer N is referred to as Trotter number and is the height of the fictitious underlying
square lattice, see figure (1). The impurity contribution to the free energy is

fi = − lim
L→∞

lim
N→∞

1

β
{ln tr[[τ̄ (uN)τ(uN)]N/2 e−βHex ] − ln tr[[τ̄h(uN)τh(uN)]N/2 e−βHex,h ]}

where Hex,h = ∑L
j=1 hex,j . The crucial idea in calculating fi is to exchange tr and str in the

expression

tr{[τ(uN)τ(uN)]N/2 e−βHex } = tr e−βHex

N/2∏
k=1

stra2ka2k−1

[
R

(4,4)

a2kL
(−uN) . . . R

(4,4)

a2k1 (−uN)

× R
(4,3)

a2k0 (−uN + iu0)R
(4,4)
a2k−1L

(uN) · · · R(4,4)
a2k−11(uN)R

(4,3)
a2k−10(uN + iu0)

]
.

This leads to

str
L∏

j=1

[
trj e−βhex,j

N/2∏
k=1

R
(4,4)

a2kj
(−uN)R

(4,4)
a2k−1j

(uN)

]

×
[

tr0 e−βHex,i

N/2∏
k=1

R
(4,3)

a2k0 (−uN + iu0)R
(4,3)
a2k−10(uN + iu0)

]
=: str

[
τ

(Q)
h (0)

]L
τ

(Q)
i (u0)

τ
(Q)
h (v) := trj e−βhex,j

N/2∏
k=1

R
(4,4)

a2kj
(−uN + iv)R

(4,4)
a2k−1j

(uN + iv) =: trj T
(Q)
h (v) (34)
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τ
(Q)
i (v) := tr0 e−βHex,i

N/2∏
k=1

R
(3,4)

0,a2k
(−uN + iv)R

(3,4)
0,a2k−1j

(uN + iv) =: tr0 T
(Q)
i (v). (35)

Equations (34), (35) define the quantum transfer matrix (QTM) τ
(Q)
h of the host and τ

(Q)
i

of the impurity, respectively. Note that the host matrix is independent of the lattice site j .
Each QTM is the trace over the auxiliary space of a quantum monodromy matrix T (Q). The
auxiliary space of τ

(Q)
h is four dimensional, of τ

(Q)
i three dimensional. Figure 1 depicts this

‘rotation’ from auxiliary space into quantum space. Due to equations (3), (10),[
τ (Q)
ν (v), τ

(Q)
ν ′ (v′)

] = 0 (36)

where the symbolical indices ν, ν ′ may take values h, i. The auxiliary spectral parameter is
essential for the diagonalization of τ (Q), the uN are inhomogeneities with alternating signs.
Especially, equation (36) holds for ν �= ν ′: the impurity and host QTM’s share the same set of
eigenvectors. The largest eigenvalue of τ (Q)

ν is separated by a gap from the rest of the spectrum
for any N. The eigenstate |�max〉 leading to the largest eigenvalue �max

i (v) of τ
(Q)
i (v) also

leads to the largest eigenvalue �max
h (v) of τ

(Q)
h (v). Although interesting, this is not essential:

the dominant eigenstate |�max〉 of the host matrix τ
(Q)
h (v) determines the ‘correct’ eigenvalue

of the impurity matrix τ
(Q)
i

ln
[
str
(
τ

(Q)
h (0)

)L
τ

(Q)
0 (u0)

]
= ln

(−1)p[max]
(
�max

h (0)
)L

�max
i (u0) +

∑
k �=max

(−1)p[k]
(
�

(k)
h (0)

)L
�

(k)
i (u0)


(37a)

∼ ln
[(

�max
h (0)

)L
�max

i (u0)
]

+
∑

k �=max

(−1)p[k]

(
�

(k)
h (0)

�max
h (0)

)L
�

(k)
i (u0)

�max
i (u0)

(37b)

which is an asymptotical expansion for large L. Generally, the eigenstate of the kth largest
eigenvalue of τ

(Q)
h does not lead to the kth largest eigenvalue of τ

(Q)
i . So with respect to τ

(Q)
i ,

k does not label the eigenvalues according to their order. The supertrace requires to include
the parity of the projector on the eigenstate k. Note that p[max] = 0. In [19] it is argued that
the two limits N → ∞, L → ∞ are interchangeable. Then the thermodynamic limit L → ∞
in equation (37b) is carried out just by keeping the largest eigenvalues �max

h,I .
One concludes that the impurity and host contribution to the free energy per lattice site

are given by

fi = − lim
N→∞

1

β
ln �max

i (u0) (38)

fh = − lim
N→∞

1

β
ln �max

h (0). (39)

Equations (38), (39) summarize the enormous advantage of considering the QTM: the
calculation of the free energy is reduced to the evaluation of a single eigenvalue.

fh has already been calculated in this approach [20, 21], the result is given below. The
diagonalization of τ

(Q)
h is done by applying techniques of the nested algebraic Bethe ansatz
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(NABA) [15], yielding for the eigenvalue �i of the non-normalized QTM τ
(Q)
i

�i(v) = λ−(v) + λ+(v) + λ0(v)

λ−(v) = q−(v + i)

q−(v)
φ+(v + iα/2)φ−(v − iα/2 − i) eβ(µ+h/2)

λ+(v) = q+(v − i)

q+(v)
φ−(v − iα/2)φ+(v + iα/2 + i) eβ(µ−h/2)

λ0(v) = q−(v + i)q+(v − i)

q−(v)q+(v)
φ+(v − iα/2)φ−(v + iα/2)

q+(v) =
M∏

j=1

(v − vj ) q−(v) =
M̃∏

k=1

(v − ṽk) φ±(v) = (v ± iu)N/2.

(40)

An external magnetic field h and a chemical potential µ have been introduced. The roots, or
particle solutions, {vj }, {ṽk} are determined by the analyticity of the eigenvalue

λ+(vj )

λ0(vj )
= q−(v)

q−(v + i)

φ−(v − iα/2)φ+(v + i + iα/2)

φ+(v − iα/2)φ−(v + iα/2)
eβ(µ−h/2)

∣∣∣∣
v=vj

= −1 (41a)

λ−(ṽk)

λ0(ṽk)
= q+(v)

q+(v − i)

φ+(v + iα/2)φ−(v − i − iα/2)

φ+(v − iα/2)φ−(v + iα/2)
eβ(µ+h/2)

∣∣∣∣
v=ṽk

= −1. (41b)

These Bethe-ansatz equations are M + M̃ many nonlinear coupled algebraic equations for the
unknown roots. Using analyticity properties, we represent the eigenvalue by a finite set of
nonlinear integral equations (NLIE). Within this approach, the Trotter limit N → ∞ is carried
out analytically. Consider the following combinations of λ±,0, equation (40):

1

b(v)
:= λ+(v)

λ−(v)

(
1 +

λ0(v)

λ+(v)

)
= q+(v − i)

q−(v + i)

φ−(v − iα/2)φ+(v + i + iα/2)

φ+(v + iα/2)φ−(v − i − iα/2)
e−βh

× q−(v)

q+(v)

(
1 +

q−(v + i)

q−(v)

φ+(v − iα/2)φ−(v + iα/2)

φ−(v − iα/2)φ+(v + i + iα/2)
e−β(µ−h/2)

)
︸ ︷︷ ︸

≡ q
(h)
− (v)

φ−(v − iα/2)φ+(v + i + iα/2)

= 1

φ+(v + iα/2)φ−(v − i − iα/2)

q+(v − i)

q−(v + i)
q

(h)
− (v) e−βh (42)

where q
(h)
− := ∏N−M+M̃

j=1

(
v − ṽ

(h)
j

)
, and ṽ

(h)
j are called hole solutions. The polynomial

q
(h)
− has been identified by reasons of analyticity: the zeroes of numerator and denominator

cancel as far as the particle solutions are concerned, the hole solutions rest as zeroes of the
numerator. The polynomials in the denominator are the same as the φ-terms in λ0/λ+. Along
the same reasoning (or simply by taking the complex conjugate and h → −h), we find another
function b:

1

b(v)
:= λ−(v)

λ+(v)

(
1 +

λ0(v)

λ−(v)

)
= 1

φ−(v − iα/2)φ+(v + i + iα/2)

q−(v + i)

q+(v − i)
q(h)

+ (v) eβh (43)
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where q
(h)
+ :=∏N−M̃+M

j=1

(
v − v

(h)
j

)
. A third function c is introduced,

1

c(v)
:= λ0(v)

λ+(v)λ−(v)
�i(v)

= φ+(v − iα/2)φ−(v + iα/2) e−2βµ

φ−(v − iα/2)φ+(v + i + iα/2)φ+(v + iα/2)φ−(v − iα/2 − i)
�i(v). (44)

Consider B := 1 + b,B := 1 + b,C := 1 + c,

B(v) = 1

λ−(v)
b(v)�i(v) = q−(v)

q+(v − i)q(h)
− (v)

�i(v) e−β(µ−h/2)

B(v) = 1

λ+(v)
b(v)�i(v) = q+(v)

q−(v + i)q(h)
+ (v)

�i(v) e−β(µ+h/2)

C(v) = 1

b(v)b(v)
c(v) = q

(h)
+ (v)q

(h)
− (v)

φ+(v − iα/2)φ−(v + iα/2)

1

�i(v)
e2βµ.

In appendix B, the unknown functions q±, q
(h)
± ,�i are expressed through the auxiliary

functions by means of analyticity arguments for the largest eigenvalue. The result is a closed
set of NLIE

ln b(v) = φb(v + iδ) − [kb ∗ ln B](v + 2iδ) − [kb ∗ ln C](v + iδ) + β(µ + h/2) (45a)

ln b(v) = φb(v − iδ) − [kb ∗ ln B](v − 2iδ) − [kb ∗ ln C](v − iδ) + β(µ − h/2) (45b)

ln c(v) = φc(v) − [kb ∗ ln B](v + iδ) − [kb ∗ ln B](v − iδ) − [kc ∗ ln C](v) + 2βµ. (45c)

The contributions of the impurity and host to the free energy are given by

−βfi = −ln c(u0) − 2βD(α + 1)Jα + 2βµ (46)

−βfh = η(0) + [ζ ∗ ln B](0) + [ζ ∗ ln B](0) + [(ζ + ζ ) ∗ ln C](0). (47)

The inhomogeneities are

φb(v) = − βD(α + 1)2

(v + iα/2)(v − iα/2 − i)
φb = φ∗

b (48)

φc = φb + φb. (49)

The convolutions [f ∗ g](x) := ∫∞
−∞ f (x − y)g(y) dy involve local kernels

kb(v) = 1

2πv(v − i)
kb = k∗

b
kc = kb + kb

2πζ(v) = − φb(−v)

Dβ(α + 1)
η(v) = 2βD

(α + 1)2

v2 + (α + 1)2
.

Following the treatment of the Hamiltonian in the preceding section, we want to perform
an asymptotic expansion of the free energy in the limit α � 1. The essential observation
from the study of the Hamiltonian is that after the canonical transformation, excitations of
the impurity stem exclusively from transitions between singly occupied states. Furthermore,
it was argued that u0 has to be scaled such that zero occupation is energetically suppressed.
First consider the case where u0 is held fixed. By scaling v → αv, the algebraically decaying
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kernels shrink to δ-functions. The leading contribution thus solely stems from the driving
terms φb,b,c. Within this approximation, the auxiliary functions can be calculated explicitly

b(αv) = a(αv)

1 + a(αv)
b(αv) = a(αv)

1 + a(αv)
c(αv) = a(αv)a(αv)

1 + a(αv) + a(αv)

a(v) = exp[φb(v + i/2) + β(µ + h/2)] a(v) = exp[φb(v − i/2) + β(µ − h/2)].
(50)

The quantity δ in equations (45a)–(45c) has been chosen δ = 1/2 such that a, a are real valued
functions. Define limα→∞(α + 1)Jα =: J0. From the expression of fi , equation (46) it then
follows that the free energy is that of an uncoupled impurity

lim
α→∞ fi(T , h) = −T ln[(aa)−1(u0) + a−1(u0) + a−1(u0)] + 2DJ0 − 2µ

= −T ln[eβ2DJ0 + eβ(µ+h/2) + eβ(µ−h/2)]. (51)

The free energy reflects the expected result of a free impurity with three possible states, namely
empty and singly occupied with up or down spin. A more detailed analysis of the case where
u0 is held fixed will be given in a forthcoming publication [10]. We now demonstrate that
the two latter states dominate if u0 is scaled appropriately with α,D,µ, such that a crossover
temperature emerges, below which a strong coupling fixed point is reached.

For low temperatures, the auxiliary function c exhibits a sharp crossover from c � 1 to
c � 1 in regions around ‘Fermi points’ ±�c defined by

−φc (�c) ≈ 2βµ �c ≈ ±α

√
D

µ
− 1

4
. (52)

Set h � µ. The influence of h on the Fermi points is neglected, since it enters quadratically.
The more common parametrization is

v

α
= 1

2
tan

k

2
(53)

where k is the wave vector used in the Fourier representation of the Hamiltonian in the
preceding section (not the Fourier variable conjugate to v). At v = �c, equation (52) is
equivalent to

2D(cos kF + 1) = µ (54)

which defines kF at constant µ at D � T , such that µ = εF (µ in turn is related to the
particle number N by kF = πN/(2L). Then equation (54) yields a relation between µ

and N, independent of T—this demonstrates that the formally grand-canonical description is
effectively canonical, because D � T ). For the analysis of the NLIE, consider

kc,b ∗ ln C(v) = kc,b ∗ ln c(v) +
∫

|w|<�c

kc,b(v − w) ln
C(w)

c(w)
dw. (55)

To evaluate the second integrand, note that asymptotically

C

c
= 1

aa
(1 + a)(1 + a) = O

(
1

bb

)
(56)

ln
C(v)

c(v)
=
{

ln [(1 + a(v)) (1 + a(v))] + [−φc(v) − 2βµ] |v| < �c

0 |v| > �c.
(57)

Consider the case |v| < �c in equation (57). The first term is exponentially small, the
second term dominates. It is inserted into the second integrand on the rhs of equation (55)
which shall be considered as a next-leading correction compared to the driving terms in
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equations (45a)–(45c). In view of equation (46), the most interesting range of the spectral
parameter is v ∼ v0. Set

|u0| = |v0/2| > �c ∼ α (58)

as indicated in (25). Then one proceeds with equation (55)

kc,b ∗ ln C(v)
|v|>�c≈ kc,b ∗ ln c(v) + kc,b(v)

∫
|w|<�c

ln
C(w)

c(w)
dw + O(1/v4).

As an estimate for the second term on the rhs, one uses the leading term of equation (57):

ln
C(v)

c(v)
= [−φc(v) − 2βµ] + O (exp[−βD])∫

|w|<�c

ln
C(w)

c(w)
dw ≈ 4βαD

[
2 arctan

2�c

α
− µ�c

αD
+ O(1/α)

]
=: βκ > 0.

(59)

The sub-leading order O(1/α) is neglected in the following, which is justified rigorously
below. The above defined quantity κ is a monotonically decreasing function of µ/D. Choose
�c > 0 such that κ > 0. Summarizing,

kb,c ∗ ln C = kb,c ∗ ln c + βκkb,c (60)

so that ln C can be eliminated in equations (45a)–(45c). The Fourier transforms of φb, φb, φc,
equations (48), (49) are

φ̂b(k) = −βD(α + 1)

{
e−α/2k k � 0
e(α/2+1)k k < 0

φ̂ b(k) = −βD(α + 1)

{
e−(α/2+1)k k � 0
eα/2k k < 0

φ̂c(k) = φ̂b(k) + φ̂ b(k) = −βD(α + 1)

{
e−α/2k(1 + e−k) k � 0
eα/2k(1 + ek) k < 0.

(61)

Inserting equation (60) gives, using equations (45a)–(45c)

ĉ(k) =
{

φ̂c

1+e−k − 1
1+ek βκ − B̂+e−kB̂

1+e−k k � 0
φ̂c

1+ek − 1
1+e−k βκ − B̂+ekB̂

1+ek k < 0
(62a)

b̂(k) = − 1

1 + e−k
βκ +

1

1 + e|k| (B̂ − B̂) (62b)

b̂(k) = − 1

1 + ek
βκ +

1

1 + e|k| (B̂ − B̂). (62c)

Note that in the limit �c → 0, i.e. µ → 4D, the resulting equations are trivially solved;
ln b = βh = −ln b, and B = 1 + exp(βh),B = 1 + exp(−βh),

fi = const + ln(eβh/2 + e−βh/2) (63)

which is the free energy of a free, uncoupled spin. This situation corresponds to a completely
filled band.

The NLIE equations (62a)–(62c) are transformed back to direct space,

ln b(v) = −2πβκ�(v + iδ) + βh/2 + [k ∗ ln B](v) − [k ∗ ln B](v + 2iδ) (64a)

ln b(v) = 2πβκ�(v − iδ) − βh/2 + [k ∗ ln B](v) − [k ∗ ln B](v − 2iδ) (64b)
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ln c(v) = −βD(α + 1)
α

v2 + α2/4
− k(v)βκ + βµ + [� ∗ ln B](v − iδ) − [� ∗ ln B](v + iδ).

(64c)

The driving term and integration kernel read

�(v) = i

2 sinh πv
k(v) = 1

2π

∫ ∞

−∞

e−|k|/2

2 cosh k/2
eikv dk.

Choose δ = 1/2 and scale v by 1/π . Since � decays exponentially, it is possible to absorb κ

and v0 in a new additive constant. Substitute

v = x − ln(2πκ) (65)

and remember that κ scales with αD (59) and therefore may be arbitrarily large. All parameters
can be combined in the free energy to a new constant TK ,

−ln(2πκ) − πv0/2 =: −ln TK TK = 2πκ eπv0/2. (66)

The range of |v0| has been identified in equation (58), we take v0 = −|v0|. The shift (65)
scales the driving term �(v/π − i/2)

−2βπκ�(v/π − i/2) = − βπκ

cosh v

= − 2βπκ

ex−ln(2πκ) + e−x+ln(2πκ)

κ→∞= −β ex. (67)

In the second line, equation (65) has been employed. At this point it is clear that sub-leading
orders in equation (59) can be safely neglected. Furthermore, a factor β can be absorbed by
shifting x → x − ln β

ln b(x) = −ex + βh/2 + [k ∗ ln B](x) − [k ∗ ln B](x + iπ − iε) (68a)

ln b(x) = −ex − βh/2 + [k ∗ ln B](x) − [k ∗ ln B](x − iπ + iε) (68b)

−βfi = 1

2π

∫ ∞

−∞

[ln BB](x)

cosh
(
x + ln T

TK

) dx. (68c)

As far as the host is concerned, equation (50) are inserted into equation (47)

− lim
α→∞ βfh = η(0) +

1

2π

∫ �c/α

−�c/α

1

v2 + 1/4
ln[(1 + a(v))(1 + a(v))]dv.

Observe the relation between the elementary excitation energy ε(v) and the momentum k(v)

as functions of the spectral parameter v (cf equation (53))

ε(v) = d

dv
k(v). (69)

Then one obtains the energy–momentum relation ε(k)

ε(v) = 1

v2 + 1/4
→ k(v) = 2 arctan 2v

ε(k) = 4 cos2 k

2
= 2 cos k + 2.

(70)
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The function k(v) in the first line is given by equation (69). From equations (59), (66), D gets
arbitrarily large, leading to a linear dispersion in the host. Then the free energy density fh of
the host is given by

fh = − lim
β�1

T

2π

∫ kF D

−kF D

ln[1 + e−β(̃vF |q|−h/2−µ̃)][1 + e−β(̃vF |q|+h/2−µ̃)] dq

µ̃ :=µ − 2D

((
1 +

3

α

)
(cos kF + 1) − 2

α
(cos kF + 1)2

)
ṽF :=2

(
1 +

3

α
− 4

α
(cos kF + 1)

)
sin kF

(71)

where q = k · D. Note that interactions in the host of order O(1/α) can be absorbed into a
redefinition of vF = 2 sin kF , resulting in effectively free fermions. The leading orders of the
specific heat and magnetic susceptibility are

Ch(T ) = T
π2

3

2

πṽF

=: T
π2

3
ρ̃h (72)

χh(T ) = 1

4

2

πṽF

=:
1

4
ρ̃h, (73)

where ρ̃h is the density of states in the host1.

4. Calculation of high- and low-temperature scales

We demonstrate the advantage of our novel approach by a direct calculation of high- and
low-temperature scales and comparison with Wilson’s results [4].

Wilson found for h, T � TK , the ratio of the specific heat Ci to the magnetic susceptibility
χi is universal

χi(T ) = 1

2πTK

Ci(T ) = πT

3TK

Rw := χi(T )

Ci(T )

Ch(T )

χh(T )
= 2.

(74)

We confirm these results in our approach by using dilogarithmic identities [22] to extract the
lowest order of the free energy for low fields and temperatures,

lim
T ,h�TK

f (T , h) = − T 2

2TK

π

3
− 1

4π

h2

TK

. (75)

From equation (75),

lim
T ,h�TK

C(T ) = T

TK

π

3
lim

T ,h�TK

χ(h) = 1

TK

1

2π
. (76)

This Fermi liquid behaviour is to be compared with the host, equations (72), (73). Define the
coefficient of the linear T-dependence of Ch by δh. Then Rw is calculated as

Rw := lim
T →0

χ

χh

δh

δ
= 2. (77)

1 The host in our model, equation (32), contains two channels. Therefore, ρ̃h is enhanced by a factor 2. The impurity
couples only to one of the two channels.
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For high T and h = 0, the impurity susceptibility asymptotically reaches the Curie–Weiss
limit

χ(T ) = 1

4T

[
1 − 1

x
− ln x

2x2
+ O

(
x−3
)]

x=ln T/T̃ K

.

T̃ K is defined such that contributions O(ln−2 T/T̃ K) do not occur

T̃ K = 2πξTK ξ = 0.1032 ± 0.0005 (78)

where the numerical value of ξ was calculated by Wilson [4]. The calculation of the numbers
Rw, ξ are benchmarks for any non-perturbative solution of the Kondo model covering the
entire temperature axis. In [6], a perturbative expansion of the free energy by Andrei gave
an analytical expression of ξ , ξ = 0.102 676 . . . . This number has not been obtained in the
framework of the exact TBA solution yet. However, by analysing the NLIE equations (68a)–
(68c) we are now able to give an accurate numerical value of ξ , which is summarized in the
rest of this section.

In the high-temperature regime T � TK , the asymptotic behaviour of the auxiliary
functions for x ∼ −ln T/TK � 0 gives the main contribution according to equation (68c).
The convolutions in equation (68a) are evaluated asymptotically at h = 0

Re ln B(x � 0) = ln 2 +
π2

4x3

Re ∂βh ln B(x � 0) = 1

2
+

1

4x
− ln|x|

8x2
+

φ

x2

Re ∂2
βh ln B(x � 0) = 1

4

(
1 +

1

x
− ln|x|

2x2
+

4φ + 1
4

x2

)
.

(79)

The coefficient φ of the x−2-decay in equation (79) is determined numerically; we find φ =
0.047 07±2×10−7. From this one obtains ξ = exp[−4φ−1/4]/2π = 0.102 678±2×10−6,
agreeing nicely both with Wilson’s and Andrei’s results. Details of the calculations will be
published in a forthcoming paper [10].

5. Conclusion and outlook

An Anderson-like impurity Hamiltonian on a one-dimensional lattice has been obtained as the
logarithmic derivative of a gl(2|1) symmetric transfer matrix. The free energy for the lattice
model was calculated exactly from a closed set of finitely many NLIE. As a special case, this
impurity model allows for the Kondo limit of a localized magnetic impurity in an interacting
host of electrons including the free fermion case. Mathematically, the Kondo limit constitutes
the reduction of gl(2|1) symmetry to su(2) symmetry on the impurity site.

We expect that the lattice regularization presented in this paper can be generalized to
the Kondo model with anisotropic exchange by using the quantum super-algebra Uq gl(2|1).
Furthermore, it is possible [23] to find representations of gl(2|1) such that one of its subalgebras
is the (2S + 1)-dimensional irrep of su(2). This allows for a lattice path integral approach
to multichannel spin-S Anderson-like models. In a forthcoming paper [10], we will give the
corresponding closed set of NLIE in the Kondo limit. These can be obtained by an argument
of symmetry, and allow for the calculation of Wilson ratios in the general multichannel
spin-S case. After having found a lattice path integral approach in the simplest case (spin-
1/2, single channel), the next question addresses two-point correlation functions such as〈
σ

µ

i σ
µ′
r

〉
, r = 1, . . . , L. Since the spectrum and the corresponding eigenstates of T

(Q)
h,i are
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known, these quantities can be calculated in principle, by generalizing methods developed
in [26] to graded models. In view of the progress in describing the screening cloud around
the impurity at T � TK by methods of conformal field theory [23, 25] complementary
understanding from the exact solution is highly desirable. Finally, the Anderson impurity
model on the lattice, including charge fluctuations, can be treated exactly by solving
equations (45a)–(45c), a question currently under investigation.
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Appendix A. Alternative fermionization and gl(2|1)-symmetry

Appendix A.1. Alternative fermionization

The matrices X and Y defined in (14), (15) provide one possible fermionic representation of
the [mj ]ba, [e0]ba . This representation is not unique: in this appendix, we use slightly modified
matrices X̃, Ỹ . However, the fermionic representation of the Hamiltonian is essentially the
same. Consider

X̃j =


(1 − nj↓)(1 − nj↑) (1 − nj↓)cj↑ cj↓(1 − nj↑) cj↓cj↑

(1 − nj↓)c
†
j↑ (1 − nj↓)nj↑ −cj↓c

†
j↑ −cj↓nj↑

c
†
j↓(1 − nj↑) c

†
j↓cj↑ nj↓(1 − nj↑) nj↓cj↑

−c
†
j↓c

†
j↑ −c

†
j↓nj↑ nj↓c

†
j↑ nj↓nj↑

 . (A.1)

The first row and column are deleted to obtain

Ỹ =

(1 − nd,↓)nd,↑ −d↓d
†
↑ −d↓nd,↑

d
†
↓d↑ nd,↓(1 − nd,↑) nd,↓d↑

−d
†
↓nd,↑ nd,↓d

†
↑ nd,↓nd,↑

 .

Again one may identify [mj ]ab = [X̃j ]ab , [e0]ba = [Ỹ ]ba , since equations (13b), (13a) are fulfilled.
The matrices X, X̃ are related by a particle-hole transformation, so that fermionization of Hh

yields the same expression as in equation (21). The fermionic representation of the impurity
operator is denoted by H̃i

H̃i = −µnd +
h

2
(nd,↑ − nd,↓) − 2DJαnd,↑nd↓(α + F̃1,L)

−DJα

√
α
∑

τ

[
d†

τ (1 − nd,τ )(cL,τ + c1,τ ) − dτ (1 − nd,τ )
(
c
†
L,τ + c

†
1,τ

)]
−DJα

∑
τ

nd,τ

(
2n1,τ + 2nL,τ − c

†
L,τ c1,τ − c

†
1,τ cL,τ

)
+ DJα

∑
τ

d†
τ dτ

(
2c

†
L,τ cL,τ + 2c

†
1,τ c1,τ − c

†
L,τ c1,τ − c

†
1,τ cL,τ

)
+ O(DJα/α1/2)

where

2F1,L = 2(n1 + nL) − c
†
1,↑cL,↑ − c

†
1,↓cL,↓ − c

†
L,↑c1,↑ − c

†
L,↓c1,↓.

The canonical transformation generated by A, equation (30), is also applicable to H̃i , and the
doubly occupied state is energetically suppressed by scaling u0. In the Kondo limit, Hi and
H̃i are seen to be identical.
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Appendix A.2. gl(2|1)-symmetry

From the YBE (3), the direct product of two monodromy matrices is intertwined by an R-matrix

(−1)p[β ′](p[α]+p[α′])[T (4,4)(u) ⊗ T (3,4)(v)]β,α

β ′,α′ [R(3,4)(v − u)]α
′,β ′

α′′,β ′′

= [R(3,4)(v − u)]α,β

α′,β ′ [T (3,4)(v) ⊗ T (4,4)(u)]α
′,β ′

α′′,β ′′(−1)p[β ′](p[α′]+p[α′′]). (A.2)

The invariance of τ(u) with respect to gl(2|1) is shown by expanding equation (A.2) in the
limit v → ∞, keeping only terms O(1), O(1/v).

R(3,4)(v) ∼ 1 +
1

v

(α

2
+ 1 + (−1)beb

aE
a
b

)
+ O

(
1

v2

)
(A.3)

T (3,4)(v) =: R
(3,4)
a,L (v)R

(3,4)
a,L−1(v) . . . R

(3,3)
a,0 (v + iu0)

∼ 1 +
1

v


L∑

j=1

[α
2

+ 1 + (−1)b[ea]ba[Ej ]ab
]

+ (−1)b[ea]ba[e0]ab

 + O

(
1

v2

)

=: 1 +
W

v
+ O

(
1

v2

)
. (A.4)

T (4,4)(u) ≡ T (u) is defined in equation (16).
Equations (A.3), (A.4) are inserted into equation (A.2) with d ′′ = 3; d = d ′ = 4, while

keeping the full T (u). The constant terms on both sides are identical. In order O(1/v), one
obtains

(−1)p[β ′′](p[α]+p[α′′])[T (u)]ββ ′′W
α
α′′ + [T (u)]ββ ′′

[
(−1)p[a]peb

aE
a
b

]α,β ′

α′′,β ′′

= (−1)p[β](p[α]+p[α′′])Wα
α′′ [T (u)]ββ ′′ +

[
(−1)p[a]peb

aE
a
b

]α,β

α′′,β ′ [T (u)]β
′

β ′′ .

Set β = β ′′, multiply with (−1)β and sum over β. The second terms on each side are identical.
The first terms give the commutator of the transfer matrix τ(u) with W

τ(u) :=
∑

β

(−1)β[T (u)]ββ,
[
τ(u),Wα

α′′
] = 0. (A.5)

Dropping constants in W , equation (A.5) states thatτ(u),

L∑
j=1

[Ej ]ab + [e0]ab

 = 0.

Thus τ commutes with all global gl(2|1) symmetry operators. In a very similar way, one starts
with equation (10) to showτ(u),

L∑
j=1

[Ej ]ab + [e0]ab

 = 0

where τ(u) is defined in equation (17). Consequently, the Hamiltonian, defined by
equation (18), is gl(2|1)-symmetric.

Appendix B. Derivation of NLIE

The unknown functions in equations (40)–(44) are q+, q−, q
(h)
− , q

(h)
+ , where the indices pertain

to two different sets of particle and hole solutions. Incidentally for the largest eigenvalue,
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the index denotes the part of the complex plane where these functions have zeroes: if a
q-function carries an index + (−), it has zeroes in the upper (lower) half plane. From numerical
studies for finite N, we know that in the largest eigenvalue case, the ‘particle solutions’ obey
Im[vj ] > 0, Im[ṽk] < 0 ∀j, k. Analogously, the ‘hole solutions’ are distributed in the complex
plane as Im

[
v

(h)
j

]
< 1, Im

[
ṽ

(h)
k

]
> 1,∀j, k. The particle and hole solutions are distributed

discretely and accumulate at certain points, prohibiting a formulation in terms of densities.
In the following, the largest eigenvalue case is studied. Consider the logarithmic derivative

of these auxiliary functions, so that constant terms vanish. Since we know the analyticity
properties of all functions in the complex v-plane, we can calculate their Fourier-transforms

f̂ =
∫ ∞

−∞
[ln f (v)]′e−ikv dv

2π
. (B.1)

The integration contour is taken along the real axis. This is allowed as long as |α/2| > |uN |,
which certainly is the case for N and α sufficiently large. f̂ vanishes for k < 0 (k > 0) for
f (v) analytic in C

+ (C−). Thus it is convenient to calculate the Fourier transforms separately
for k < 0, k > 0. For the moment, concentrate on k < 0.

−b̂(k) = −e(α/2+1)kφ̂−(k) + ekq̂+(k) (B.2)

−b̂(k) = −ekα/2φ̂−(k) − ekq̂+ + q̂(h)
+ (B.3)

−ĉ(k) = ekα/2(φ̂+(k) − φ̂−(k)) − e(α/2+1)kφ−(k) + �̂i(k) (B.4)

B̂(k) = −ekq̂+(k) + �̂i(k) (B.5)

B̂(k) = q̂+(k) − q̂(h)
+ (k) + �̂i(k) (B.6)

Ĉ(k) = −ekα/2φ̂+(k) + q̂(h)
+ (k) − �̂i(k). (B.7)

The essential observation is that in equations (B.2)–(B.4), there appear the three unknowns,

namely q̂+, q̂
(h)
+ and �̂i , and the three auxiliary functions b̂, b̂ and ĉ. Add equations (B.6),

(B.7) and combine this sum with equation (B.2)

b̂(k) = e(α/2+1)k(φ̂−(k) − φ+(k)) − ek(B̂(k) + Ĉ(k)). (B.8)

Combine equations (B.5) with (B.2) and these two with equation (B.8). An expression for �̂i

results

�̂i(k) = B̂(k) + ek(B̂(k) + Ĉ(k)) + e(α/2+1)kφ̂+(k)

which is inserted into equation (B.4)

ĉ(k) = −ekα/2(φ̂+(k) − φ̂−(k)) + e(α/2+1)k(φ̂−(k) − φ̂+(k)) − B̂(k) − ek(B̂(k) + Ĉ(k)).

Finally, equations (B.5) and (B.7) give q̂
(h)
+ (k), which is inserted into equation (B.3)

b̂(k) = ekα/2(φ̂−(k) − φ̂+(k)) − (Ĉ(k) + B̂(k)). (B.9)
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The case k > 0 is obtained by exchanging b̂, b̂, switching k → −k in the exponential terms
and replacing φ− ↔ φ+. The result is summarized

b̂(k) =


e−kα/2(φ̂+(k) − φ̂−(k)) − (B̂(k) + Ĉ(k)) k > 0

−(B̂(k) + Ĉ(k)) k = 0

e(α/2+1)k(φ̂−(k) − φ̂+(k)) − ek(B̂(k) + Ĉ(k)) k < 0

b̂(k) =


e−(α/2+1)k(φ̂+(k) − φ̂−(k)) − e−k(B̂(k) + Ĉ(k)) k > 0
−(B̂(k) + Ĉ(k)) k = 0
ekα/2(φ̂−(k) − φ̂+(k)) − (B̂(k) + Ĉ(k)) k < 0

ĉ(k) =


(e−(α/2+1)k + e−kα/2)(φ̂+(k) − φ̂−(k)) − B̂(k) − e−k(B̂(k) + Ĉ(k)) k > 0

−B̂(k) − (B̂(k) + Ĉ(k)) k = 0

(e(α/2+1)k + ekα/2)(φ̂−(k) − φ̂+(k)) − B̂(k) − ek(B̂(k) + Ĉ(k)) k < 0.

Application of the inverse Fourier transform and integration leads to a system of nonlinear
integral equations

ln b(v) = φ
(N)

b
(v + iδ) − [kb ∗ ln B](v + 2iδ) − [kb ∗ ln C](v + iδ) + β(µ + h/2) (B.10)

ln b(v) = φ
(N)

b
(v − iδ) − [kb ∗ ln B](v − 2iδ) − [kb ∗ ln C](v − iδ) + β(µ − h/2) (B.11)

ln c(v) = φ(N)
c (v) − [kb ∗ ln B](v + iδ) − [kb ∗ ln B](v − iδ) − [kc ∗ ln C](v) + 2βµ (B.12)

where the convolution

[f ∗ g](x) :=
∫ ∞

−∞
f (x − y)g(y) dy (B.13)

is done with local kernels

kb(v) = 1

2πv(v − i)
kb(v) = kb(v)∗ kc(v) = kb(v) + kb(v) = 2

2π(v2 + 1)
.

In order to achieve convergence, the equation for ln b (ln b), equation (B.10) (equation (B.11)),
is taken for v + iδ, (v − iδ).

The constant terms are integration constants derived from the asymptotic behaviour of the
auxiliary functions for large |v|

lim
|v|→∞

b = a

1 + a
lim

|v|→∞
b = a

1 + a
lim

|v|→∞
c = aa

1 + a + a
(B.14)

a = eβ(µ+h/2) a = eβ(µ−h/2). (B.15)

The inhomogeneities are

φ
(N)

b
(v) = ln

φ+
(
v + i α

2

)
φ−
(
v − i α

2 − i
)

φ−
(
v + i α

2

)
φ+
(
v − i α

2 − i
)

φ
(N)

b
= [φ(N)

b

]∗
φ(N)

c = φ
(N)

b
+ φ

(N)

b
.

The thermodynamic limit N → ∞ can be carried out leading to equations (45a)–(45c).
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[21] Sakai K and Klümper A 2001 J. Phys. A: Math. Gen. 34 8015
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